User Sentiment Analysis X Towards Makan Bergizi Gratis Program Using Automatic Labeling Technique with Deepseek AI
DOI:
https://doi.org/10.64878/jistics.v1i2.43Keywords:
Automatic labeling, VADER Lexicon, Deepseek ai, K- Nearest Neighbour, Makan Bergizi Gratis, Cohen's Kappa, SMOTE, Sentiment AnalysisAbstract
Public perception of national nutrition initiatives is instrumental in shaping inclusive and data-driven policy development. In Indonesia, the "Makan Bergizi Gratis" (MBG) program introduced by President Prabowo has drawn significant attention, particularly on the X platform (formerly Twitter). This research topic was selected due to its national urgency and political significance, as the MBG program emerged as a key agenda during the 2024–2025 political transition. Therefore, examining public sentiment is essential to assess policy acceptance and identify areas for improvement. This study analyzes user sentiment toward the MBG policy using an automatic labeling approach supported by DeepSeek AI and the VADER Lexicon, followed by sentiment classification through the K-Nearest Neighbor (KNN) algorithm. The research involved five main stages: collecting 1,704 tweets from X between January 2024 and March 2025, preprocessing the text, conducting automatic sentiment labeling, applying TF-IDF for vectorization, handling class imbalance using the Synthetic Minority Over-sampling Technique (SMOTE), and classifying sentiments using KNN. The results indicate that without SMOTE, the VADER model achieved higher accuracy (93.49%) but lower Cohen's Kappa (0.16), while DeepSeek AI yielded lower accuracy (73.67%) but slightly higher Kappa (0.17). After SMOTE was applied, accuracy declined (VADER to 77.25%, DeepSeek AI to 64.72%), but Kappa scores improved significantly (VADER to 0.65, DeepSeek AI to 0.47), indicating more balanced and consistent sentiment predictions across classes. In conclusion, integrating automatic labeling, SMOTE, and KNN provides a reliable and scalable framework for analyzing large-scale sentiment on social media platforms, particularly in contexts with imbalanced opinion distributions.
Downloads
References
I. P. D. W. Darmawan, G. A. Pradnyana, and I. B. N. Pascima, “Optimasi Parameter Support Vector Machine Dengan Algoritma Genetika Untuk Analisis Sentimen Pada Media Sosial Instagram,” SINTECH (Science Inf. Technol. J., vol. 6, no. 1, pp. 58–67, 2023, doi: 10.31598/sintechjournal.v6i1.1245.
N. Dwivedi, Y.K.;Hughes, D.L.;Coombs, C.;Constantiou, I.;Duan, Y.;Edwards, J.S.;Gupta, B.;Lal, B.;Misra, S.;Prashant, P.;Raman, R.;Rana, Nripendra P.;Sharma, S.K.;Upadhyay and Dwivedi, “Impact of COVID-19 pandemic on information management research and practice: transforming education, work and life,” 2025.
Eka Hendrayani, Rudy Irwansyah, Hadiansyah Ma’sum, Olivia Tahalele, and Zunan Setiawan, “Analisis Strategi Promosi Media Sosial Terhadap Keputusan Mahasiswa dalam Memilih Institusi Pendidikan Tinggi,” El-Mal J. Kaji. Ekon. Bisnis Islam, vol. 5, no. 7, pp. 136–146, 2024, doi: 10.47467/elmal.v5i7.4304.
A. A. Merlinda and Y. Yusuf, “Analisis Program Makan Gratis Prabowo Subianto Terhadap Strategi Peningkatan Motivasi Belajar Siswa di Sekolah Tinjauan dari Perspektif Sosiologi Pendidikan,” vol. 7, no. 2, pp. 1364–1373, 2025.
A. R. Ritonga, H. Sazali, U. Islam, N. Sumatera, and U. Medan, “Analisis Komunikasi Pembangunan Terhadap Regulasi Dan Kebijakan Program Makan,” vol. 1, no. 1, pp. 32–40, 2025.
I. Julianto, D. Kurniadi, Y. Septiana, and A. Sutedi, “Alternative Text Pre-Processing using Chat GPT Open AI,” J. Nas. Pendidik. Tek. Inform., vol. 12, no. 1, pp. 67–77, 2023, doi: 10.23887/janapati.v12i1.59746.
N. Fajriyah, N. T. Lapatta, D. W. Nugraha, and R. Laila, “Implementasi svm dan smote pada analisis sentimen media sosial x terhadap pelantikan agus harimurti yudhoyono,” vol. 10, no. 2, pp. 1359–1370, 2025.
F. N. Salsabilla et al., “Presiden Jokowi Pada Media Sosial X,” vol. 8, pp. 106–115, 2025.
M. K. Anam, “Sentiment Analysis Of Online Lectures Using K-Nearest Neighbors Based On Feature Selection Jurnal Nasional Pendidikan Teknik Informatika : JANAPATI | 217,” vol. 11, pp. 216–225, 2022.
J. A. Septian, T. M. Fachrudin, and A. Nugroho, “Analisis Sentimen Pengguna Twitter Terhadap Polemik Persepakbolaan Indonesia Menggunakan Pembobotan TF-IDF dan K-Nearest Neighbor,” J. Intell. Syst. Comput., vol. 1, no. 1, pp. 43–49, 2020, doi: 10.52985/insyst.v1i1.36.
R. B. Afandi, T. F. Nurdiansyah, A. N. Ramadhani, and A. P. Sari, “Implementasi Support Vector Machine untuk Analisis Sentimen Aplikasi ‘Mpstore - Super App UMKM,’” J. Inform. Polinema, vol. 10, no. 4, pp. 565–570, 2024, doi: 10.33795/jip.v10i4.5427.
I. T. Julianto, D. Kurniadi, B. B.balilo jr, and F. Rohman, “The Role Of Feature Selection In Enhancing The Accuracy Of Ai Assistant Auto-Labeling,” vol. 4, no. 1, pp. 1–23, 2024.
I. T. Julianto, D. Kurniadi, B. B.balilo jr, and F. Rohman, “A Comparative Study of Alternative Automatic Labeling Using AI Assistant,” vol. 8, no. 4, pp. 2125–2133, 2024.
L. Nursinggah, R. Ruuhwan, and T. Mufizar, “Analisis Sentimen Pengguna Aplikasi X Terhadap Program Makan Siang Gratis Dengan Metode Naïve Bayes Classifier,” J. Inform. dan Tek. Elektro Terap., vol. 12, no. 3, 2024, doi: 10.23960/jitet.v12i3.4336.
L. D. Ditha, A. A. Arifiyanti, and F. A. W. Seftin, “Analisis Sentimen ulasan Pengguna Access By Kai,” vol. 12, no. 3, 2024.
M. L. McHugh, “Lessons in biostatistics interrater reliability : the kappa statistic,” Biochem. Medica, vol. 22, no. 3, pp. 276–282, 2012, [Online]. Available: https://hrcak.srce.hr/89395
J. Supriyanto, D. Alita, and A. R. Isnain, “Penerapan Algoritma K-Nearest Neighbor (K-NN) Untuk Analisis Sentimen Publik Terhadap Pembelajaran Daring,” J. Inform. dan Rekayasa Perangkat Lunak, vol. 4, no. 1, pp. 74–80, 2023, doi: 10.33365/jatika.v4i1.2468.
A. G. Pertiwi, N. Bachtiar, R. Kusumaningrum, I. Waspada, and A. Wibowo, “Comparison of performance of k-nearest neighbor algorithm using smote and k-nearest neighbor algorithm without smote in diagnosis of diabetes disease in balanced data,” J. Phys. Conf. Ser., vol. 1524, no. 1, 2020, doi: 10.1088/1742-6596/1524/1/012048.
A. N. Kasanah, M. Muladi, and U. Pujianto, “Penerapan Teknik SMOTE untuk Mengatasi Imbalance Class dalam Klasifikasi Objektivitas Berita Online Menggunakan Algoritma KNN,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 3, no. 2, pp. 196–201, 2020, doi: 10.29207/resti.v3i2.945.
C. W. Schmidt et al., “Tokenization Is More Than Compression,” 2024, [Online]. Available: http://arxiv.org/abs/2402.18376
M. U. Albab, Y. Karuniawati P, and M. N. Fawaiq, “Optimization of the Stemming Technique on Text preprocessing President 3 Periods Topic,” J. Transform., vol. 20, no. 2, pp. 1–10, 2023, [Online]. Available: https://journals.usm.ac.id/index.php/transformatika/page1
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Indri Tri Julianto, Dini Siti Nurpajar

This work is licensed under a Creative Commons Attribution 4.0 International License.
License:
This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.







