Image Classification Using MobileNet Based on CNN Architecture for Grape Leaf Disease Detection

Authors

  • Ahmad Nur Sahid Institut Teknologi Garut
  • Deden Ruli Cahyadi Institut Teknologi Garut

DOI:

https://doi.org/10.64878/jistics.v1i1.7

Keywords:

Disease Detection, Image Classification, Convolutional Neural Network, MobileNetV2, Fine Tunning, Deep Learning

Abstract

Grape cultivation, while economically important, is often challenged by various leaf diseases that can significantly impact yield and quality, underscoring the need for rapid and accurate detection methods. Traditional diagnostic approaches can be time-consuming and require expert knowledge, whereas advanced image classification techniques offer a promising avenue for automated disease identification. This research aimed to develop and rigorously evaluate a Convolutional Neural Network (CNN) model, specifically leveraging the MobileNetV2 architecture, for the precise classification of four common grape leaf diseases: healthy, Black Rot, Esca (also known as Black Measles), and Leaf Blight. The methodology encompassed dataset acquisition and pre-processing, data augmentation to increase training data diversity, and applying transfer learning using pre-trained MobileNetV2 weights, followed by a fine-tuning stage to adapt the model to the specific task. A comprehensive evaluation on 1,805 previously unseen test images demonstrated the model's exceptional performance, achieving an overall accuracy of 99.89%. Ultimately, the proposed approach significantly outperforms previous methods, demonstrating the feasibility of applying lightweight CNN architectures to real-world detection scenarios. The main contribution of this research is showing that high computational efficiency can be achieved without sacrificing accuracy, paving the way for implementation in digital detection systems with limited resources, particularly for mobile devices or edge systems.

Downloads

Download data is not yet available.

References

[1] R. Supriyadi, W. Gata, N. Maulidah, and A. Fauzi, “Penerapan Algoritma Random Forest Untuk Menentukan Kualitas Anggur Merah,” E-BISNIS: JURNAL ILMIAH EKONOMI DAN BISNIS, vol. 13, no. 2, pp. 67–75, Nov. 2020, doi: 10.51903/E-BISNIS.V13I2.247.

[2] S. Firdaus, T. Rismawan, and U. Ristian, “Sistem Manajemen Pengairan Pada Budidaya Tanaman Anggur Berbasis Internet Of Things (Iot),” Jurnal Informatika dan Teknik Elektro Terapan, vol. 11, no. 3s1, pp. 907–916, Sep. 2023, doi: 10.23960/jitet.v11i3s1.3389.

[3] I. S. Jiwandono et al., “Pengolahan Buah Anggur Dan Mangga Sebagai Upaya Meningkatkan Jiwa Wirausaha Masyarakat Desa Sokong Kecamatan Tanjung Lombok Utara,” Jurnal Interaktif: Warta Pengabdian Pendidikan, vol. 2, no. 1, pp. 21–27, Jun. 2022, doi: 10.29303/interaktif.v2i1.50.

[4] M. A. Ansah, P. Kasih, A. Dusea, and W. Dara, “Identifikasi Penyakit Daun Anggur Berdasarkan Fitur Warna Dan Tekstur Dengan Metode Backpropagation Berbasis Android,” Prosiding SEMNAS INOTEK (Seminar Nasional Inovasi Teknologi), vol. 6, no. 2, pp. 265–271, Aug. 2022, doi: 10.29407/INOTEK.V6I2.2594.

[5] A. Jovano, M. I. Rosadi, and C. B. Sanjaya, “Klasifikasi Jenis Penyakit Daun Anggur Menggunakan Metode Ekstraksi Fitur Glcm Dan Neural Network,” NJCA (Nusantara Journal of Computers and Its Applications), vol. 6, no. 2, pp. 11–18, Aug. 2022, doi: 10.36564/njca.v6i2.218.

[6] A. G. Sooai, P. A. Nani, N. M. R. Mamulak, C. O. Sianturi, S. C. Sianturi, and A. H. Mondolang, “Klasifikasi Citra Daun Anggur Menggunakan SVM Kernel Linear,” JOINTECS (Journal of Information Technology and Computer Science), vol. 8, no. 1, p. 19, Mar. 2023, doi: 10.31328/jointecs.v8i1.4496.

[7] F. M. Fathoni, C. A. Putra, and A. L. Nurlaili, “Klasifikasi Penyakit Daun Anggur Menggunakan Metode K-nearest Neighbor Berdasarkan Gray Level Co-occurrence Matrix,” Biner : Jurnal Ilmiah Informatika dan Komputer, vol. 3, no. 1, pp. 8–15, Jan. 2024, doi: 10.32699/biner.v3i1.6332.

[8] Moh. Erkamim, Y. Yanuardi, M. I. Shalahudin, and A. Arisantoso, “Klasifikasi Citra Penyakit Daun Anggur Menggunakan Radial Basis Function Neural Networks,” Bulletin of Computer Science Research, vol. 4, no. 5, pp. 398–407, Aug. 2024, doi: 10.47065/BULLETINCSR.V4I5.324.

[9] E. Safitri, R. Heppy Ria Sibarani, Y. SM Sidabutar, and D. Kiswanto, “Klasifikasi Penyakit Daun Anggur Berbasis Citra Menggunakan Metode K-nearest Neighbors (KNN),” JATI (Jurnal Mahasiswa Teknik Informatika), vol. 8, no. 6, pp. 12633–12642, Nov. 2024, doi: 10.36040/jati.v8i6.12004.

[10] C. Venkatachalam, P. Shah, B. A, K. R. K M, Y. K. S, and A. Roy, “Advanced Grape Leaf Disease Diagnosis Using EfficientNetV2L with Data Augmentation and Grad-CAM Visualization in Precision Agriculture,” Procedia Comput Sci, vol. 260, pp. 332–340, 2025, doi: 10.1016/j.procs.2025.03.209.

[11] E. Mahamud, N. Fahad, M. Assaduzzaman, S. M. Zain, K. O. M. Goh, and Md. K. Morol, “An explainable artificial intelligence model for multiple lung diseases classification from chest X-ray images using fine-tuned transfer learning,” Decision Analytics Journal, vol. 12, p. 100499, Sep. 2024, doi: 10.1016/j.dajour.2024.100499.

[12] S. Khattar and Dr. R. Bajaj, “Enhancement of Multiclass Dermoscopic Image Classification with a Fusion Model and Fine-Tuned Deep Neural Networks,” Procedia Comput Sci, vol. 233, pp. 204–214, 2024, doi: 10.1016/j.procs.2024.03.210.

[13] Liana Trihardianingsih and Hanifah Permatasari, “Pengaruh Optimizer Terhadap Akurasi Klasifikasi Pistachio Menggunakan MobileNetV2,” Jurnal Informatika Teknologi dan Sains (Jinteks), vol. 7, no. 2, pp. 644–649, May 2025, doi: 10.51401/jinteks.v7i2.5571.

[14] S. Ramdani and A. Rahmatulloh, “Implementasi Mobilenet untuk Klasifikasi Gambar dan Deteksi Emosi Menggunakan KERAS,” Jurnal Sistem dan Teknologi Informasi (JustIN), vol. 12, no. 2, p. 259, Apr. 2024, doi: 10.26418/justin.v12i2.73389.

[15] O. V. Putra, M. Z. Mustaqim, and D. Muriatmoko, “Transfer Learning untuk Klasifikasi Penyakit dan Hama Padi Menggunakan MobileNetV2,” Techno.Com, vol. 22, no. 3, pp. 562–575, Aug. 2023, doi: 10.33633/tc.v22i3.8516.

[16] Y. Wiratama and R. A. Aziz, “Perbandingan Prediksi Penyakit Stunting Balita Menggunakan Algoritma Support Vektor Machine dan Random Forest,” Building of Informatics, Technology and Science (BITS), vol. 6, no. 2, pp. 1159–1168, Sep. 2024, doi: 10.47065/BITS.V6I2.5543.

[17] A. Fakih, M. A. Hamzami, M. R. Hadianto, and N. I. S. Alifah, “Perbandingan Akurasi Algoritma C4.5 dan K-NN Untuk Prediksi Kelulusan Mahasiswa Penerima Beasiswa,” Jurnal Komputer Antartika, vol. 3, no. 1, pp. 18–25, Jan. 2025, doi: 10.70052/jka.v3i1.623.

Downloads

Published

2025-06-17

How to Cite

[1]
A. Nur Sahid and D. R. Cahyadi, “Image Classification Using MobileNet Based on CNN Architecture for Grape Leaf Disease Detection”, J. Intell. Syst. Technol. Inform., vol. 1, no. 1, pp. 15–21, Jun. 2025.

Similar Articles

1 2 > >> 

You may also start an advanced similarity search for this article.