Gender Identification from Facial Images Using Custom Convolutional Neural Network Architecture

Authors

  • Ikbal Amiludin Institut Teknologi Garut
  • Andika Eka Sastya Putra Institut Teknologi Garut

DOI:

https://doi.org/10.64878/jistics.v1i1.27

Keywords:

AUC, CNN Architecture, Facial Classification, Gender Recognition, Image Preprocessing

Abstract

Gender classification from facial images has become increasingly important in biometric applications. This study introduces a deep learning approach utilizing a custom convolutional neural network (CNN) model trained on 8,908 labeled facial images obtained from Kaggle, comprising 4,169 female and 4,739 male samples. Each image underwent preprocessing, including grayscale conversion, face alignment, cropping, resizing to 100×100 pixels, and pixel normalization. The CNN architecture consists of three convolutional layers with ReLU activation, max-pooling layers, a flatten layer, and two dense layers, ending with a sigmoid activation function for binary classification. The model was implemented using TensorFlow and trained for 70 epochs on Google Colab with GPU acceleration. Evaluation metrics include classification accuracy, confusion matrix, and area under the curve (AUC) from the ROC curve. The proposed system achieved 90.79% accuracy and 0.97 AUC, indicating robust performance. However, the confusion matrix revealed slightly higher precision for male predictions, suggesting the need for class balance refinement. The method demonstrates strong potential for integration into real-world facial analysis systems, such as identity verification, access control, and intelligent surveillance platforms.

Downloads

Download data is not yet available.

References

[1] N. Chalista et al., “Identifikasi Pengenalan Wajah Berdasarkan Jenis Kelamin Menggunakan Metode Convolutional Neural Network ( CNN ),” vol. 6, no. 1, 2024, doi: 10.37802/joti.v6i1.694.

[2] A. Noor, T. Taxila, W. Ahmad, T. Taxila, S. Adnan, and T. Taxila, “Deep Faces: Advancing Age and Gender Classification using Facial Images with Deep Features,” no. July, 2024.

[3] A. Dwi Safitri, D. Mariska, M. Fahrezi, M. Abadi, and Thia, “Aplikasi klasifikasi Gender dan Usia Berdasarkan Citra Wajah Manusia Menggunakan TensorFlow,” J. Inf. Technol. Soc., vol. 2, no. 1, pp. 17–21, 2024, doi: 10.35438/jits.v2i1.34.

[4] R. Armandhani, R. Cahya Wihandika, and M. A. Rahman, “Klasifikasi Gender berbasis Wajah menggunakan Metode Local Binary Pattern dan Random KNN,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 3, no. 8, pp. 7575–7582, 2019.

[5] J. Tugas, A. Fakultas Informatika, H. Salsabila, E. Rachmawati, and F. Sthevanie, “Klasifikasi Gender Berdasarkan Citra Wajah Menggunakan Metode Local Binary Pattern dan K-Nearest Neighbor,” J. Tugas Akhir Fak. Inform., vol. 8, no. 2, pp. 3137–3146, 2021.

[6] S. Tinggi, M. Informatika, and S. Likmi, “Klasifikasi Gender Menggunakan Data Wajah Dengan Algoritma Gender Classification Using Face Data With The Naïve Bayes Algorithm And K-Nearest Neighbors Algorithm,” vol. 12, no. 1, pp. 99–110, 2025, doi: 10.25126/jtiik.2025128724.

[7] R. D. Wicaksono and G. F. Shidiq, “Comparison of KNN and CNN Algorithms for Gender Classification Based on Eye Images,” vol. 11, no. 4, pp. 915–924, 2024, doi: 10.15294/sji.v11i4.13529.

[8] F. Dahliah, B. Minat, and S. Data, “Klasifikasi Gender Melalui Citra Mata Menggunakan Metode Convolutional Neural Network (CNN) dengan Model Arsitektur VGG-16 Proposal Tugas Akhir,” no. 202010370311181, 2024.

[9] C. Angga Marcelio, M. Adlan Azzikra, D. Putra Mufazzal, A. Rahman Illahi, S. Al Husain, and Abdiansyah, “Aplikasi Analisis Wajah, Klasifikasi Gender dan Prediksi Usia Menggunakan Deep Learning pada Dataset Citra Wajah Manusia,” J. Media Infotama, vol. 20, no. 1, pp. 378–383, 2024.

[10] C. Vyshnavi, N. S. Homitha, B. Vasavi, M. Bhavana, and S. Bulla, “Intelligent Systems and Applications in Gender Classification Using Convolutional Neural Network ( CNN ),” vol. 12, no. 3, pp. 454–464, 2024.

[11] S. Tilki, H. B. Dogru, A. A. Hameed, A. Jamil, and J. Rasheed, “Gender Classification using Deep Learning Techniques,” vol. 02, no. May, pp. 126–131, 2021.

[12] E. Barcic, P. Grd, I. Tomicic, E. Barči, and I. Tomiči, “Convolutional Neural Networks for Face Recognition: A Systematic Literature Review,” pp. 0–85, 2023, [Online]. Available: https://doi.org/10.21203/rs.3.rs-3145839/v1

[13] B. K. Triwijoyo, “Model Fast Tansfer Learning pada Jaringan Syaraf Tiruan Konvolusional untuk Klasifikasi Gender Berdasarkan Citra Wajah,” MATRIK J. Manajemen, Tek. Inform. dan Rekayasa Komput., vol. 18, no. 2, pp. 211–221, 2019, doi: 10.30812/matrik.v18i2.376.

Downloads

Published

2025-06-14

How to Cite

[1]
I. Amiludin and A. E. S. Putra, “Gender Identification from Facial Images Using Custom Convolutional Neural Network Architecture”, J. Intell. Syst. Technol. Inform., vol. 1, no. 1, pp. 10–14, Jun. 2025.

Similar Articles

1 2 > >> 

You may also start an advanced similarity search for this article.