Development of MyCare AI: A Dual-AI Mental Health Chatbot for Personalized Emotional Support

Authors

  • Zaenal Syamsyul Arief Institut Teknologi Garut
  • Muhamad Hamzah Institut Teknologi Garut
  • Moch Nazham Ismul Azham Institut Teknologi Garut

DOI:

https://doi.org/10.64878/jistics.v1i2.34

Keywords:

Artifical Intelligence, Chatbot, Deep Learning, Emotion Classification, Mental Health, Natural Language Processing, Bi-LSTM, Google Vertex AI, TensorFlow

Abstract

Access to mental health services remains a critical challenge in Indonesia, primarily due to societal stigma and limited availability of professional support. In response to this issue, this study introduces MyCare AI. This web-based mental health chatbot platform combines a Bi-LSTM-based emotion classification model with a generative conversational model provided by Google Vertex AI. This Dual-AI architecture enables the system to detect user emotions from Indonesian text inputs and deliver real-time, contextually appropriate, and empathetic responses. The emotion classification model is trained on a balanced English-language dataset representing four key emotional states: sadness, suicidal ideation, fear, and anger. The system employs a translation mechanism to convert Indonesian input into English before classification and then uses the detected emotion to condition the response generation process dynamically. The model achieved a classification accuracy of 95%, outperforming comparable models based on BERT-SVM and conventional LSTM architecture. This platform is intended for individuals who require immediate, anonymous, and continuous emotional support, including users in underserved or remote communities. MyCare AI represents a scalable and practical solution for digital emotional assistance and lays the groundwork for future integration with professional mental health services and native-language support frameworks. Key limitations include the system's reliance on real-time translation and an English-based dataset, highlighting the need for future development of culturally specific models.

Downloads

Download data is not yet available.

References

T. D. A. N. Prospek, “Chatbot Ai Dalam Identifikasi Awal Gangguan Kesehatan Mental Di Indonesia :,” vol. 13, pp. 498–508, 2024.

K. Aulia and L. Amelia, “Analisis Sentimen Twitter Pada Isu Mental Health Dengan Algoritma Klasifikasi Naive Bayes,” Siliwangi J. (Seri Sains Teknol.), vol. 6, no. 2, pp. 60–65, 2020.

H. Wijaya, M. F. Hadi, and N. Sulistianingsih, “Using Sentiment Analysis with BERT and SVM for Detect Mental Health Detection on Social Media,” vol. 1, no. 2, pp. 54–63, 2025.

K. S. Nugroho, I. Akbar, A. N. Suksmawati, and Istiadi, “Deteksi Depresi dan Kecemasan Pengguna Twitter Menggunakan Bidirectional LSTM,” no. Ciastech, pp. 287–296, 2023, [Online]. Available: http://arxiv.org/abs/2301.04521

I. M. Nur, “Mengatasi Imbalance Class Data pada Kasus Mental Health di Indonesia: Implementation of Adaptive Synthetic,” J. Data Insights, vol. 1, no. 1, pp. 10–18, 2023, [Online]. Available: https://jurnalnew.unimus.ac.id/index.php/jodi/article/view/134%0Ahttps://jurnalnew.unimus.ac.id/index.php/jodi/article/download/134/77

I. P. A. (PDSKJI), “Mental Health Statistics.” [Online]. Available: https://www.pdskji.org/home

A. Tewari, A. Chhabria, A. S. Khalsa, S. Chaudhary, and H. Kanal, “A Survey of Mental Health Chatbots using NLP,” SSRN Electron. J., pp. 1–6, 2021, doi: 10.2139/ssrn.3833914.

H. Aulia et al., “Analyzing Public Sentiment towards Mental Health on Social Media Twitter Using Machine Learning,” Positif, vol. 10, no. 2, pp. 75–81, 2024.

S. Mulyani and R. Novita, “Implementation of the Naive Bayes Classifier Algorithm for Classification of Community Sentiment About Depression on Youtube,” J. Tek. Inform., vol. 3, no. 5, pp. 1355–1361, 2022, doi: 10.20884/1.jutif.2022.3.5.374.

P. Elisa and A. Rahman Isnain, “Comparison of Random Forest, Support Vector Machine and Naive Bayes Algorithms To Analyze Sentiment Towards Mental Health Stigma,” J. Tek. Inform., vol. 5, no. 1, pp. 321–329, 2024, [Online]. Available: https://doi.org/10.52436/1.jutif.2024.5.1.1817

Muhammad Daffa Al Fahreza, Ardytha Luthfiarta, Muhammad Rafid, and Michael Indrawan, “Analisis Sentimen: Pengaruh Jam Kerja Terhadap Kesehatan Mental Generasi Z,” J. Appl. Comput. Sci. Technol., vol. 5, no. 1, pp. 16–25, 2024, doi: 10.52158/jacost.v5i1.715.

A. I. Safitri, T. B. Sasongko, and U. A. Yogyakarta, “Sentiment Analysis of Cyberbullying Using Bidirectional Long short Term Memory Algorithn on Twitter,” J. Tek. Inform., vol. 5, no. 2, pp. 615–620, 2024.

M. Petronella Purba and Y. Transver Wijaya, “Analisis Basic Emotion Masyarakat Pada Masa Pandemi COVID-19 dengan Metode LSTM-FastText,” Semin. Nas. Off. Stat., vol. 19, pp. 643–645, 2022.

I. A. Fadilla, “Chatbot Untuk Konsultasi Kesehatan Mental Menggunakan Long Short-Term Memory (LSTM),” Αγαη, vol. 8, no. 5, p. 55, 2019.

C. D. Putra et al., “Mengembangkan Chatbot Empatik untuk Dukungan Kesehatan Mental : Solusi Inovatif dalam Pendampingan Psikologis,” vol. 1, no. 2, pp. 7–12, 2024.

Joyeeta Dey and Dhyani Desai, “NLP Based Approach for Classification of Mental Health Issues using LSTM and GloVe Embeddings,” Int. J. Adv. Res. Sci. Commun. Technol., vol. 2, no. 1, pp. 347–354, 2022, doi: 10.48175/ijarsct-2296.

Z. Fei et al., “Deep convolution network based emotion analysis towards mental health care,” Neurocomputing, vol. 388, pp. 212–227, 2020, doi: 10.1016/j.neucom.2020.01.034.

N. Elgiriyewithana, “Emotions.” [Online]. Available: https://www.kaggle.com/datasets/nelgiriyewithana/emotions

S. Sarkar, “Sentiment Analysis for Mental Health.” [Online]. Available: https://www.kaggle.com/datasets/suchintikasarkar/sentiment-analysis-for-mental-health

C. Zucco, B. Calabrese, G. Agapito, P. H. Guzzi, and M. Cannataro, “Sentiment analysis for mining texts and social networks data: Methods and tools,” Wiley Interdiscip. Rev. Data Min. Knowl. Discov., vol. 10, no. 1, pp. 1–32, 2020, doi: 10.1002/widm.1333.

G. Cloud, “Train and use your own models.” Accessed: Jun. 17, 2025. [Online]. Available: https://cloud.google.com/vertex-ai/docs/training-overview

Z. Cui, R. Ke, Z. Pu, and Y. Wang, “Deep Bidirectional and Unidirectional LSTM Recurrent Neural Network for Network-wide Traffic Speed Prediction,” pp. 1–11, 2018, [Online]. Available: http://arxiv.org/abs/1801.02143

O. Rainio, J. Teuho, and R. Klén, “Evaluation metrics and statistical tests for machine learning,” Sci. Rep., vol. 14, no. 1, pp. 1–14, 2024, doi: 10.1038/s41598-024-56706-x.

Downloads

Published

2025-09-14

How to Cite

[1]
Z. S. Arief, M. Hamzah, and M. N. I. Azham, “Development of MyCare AI: A Dual-AI Mental Health Chatbot for Personalized Emotional Support”, J. Intell. Syst. Technol. Inform., vol. 1, no. 2, pp. 45–52, Sep. 2025.